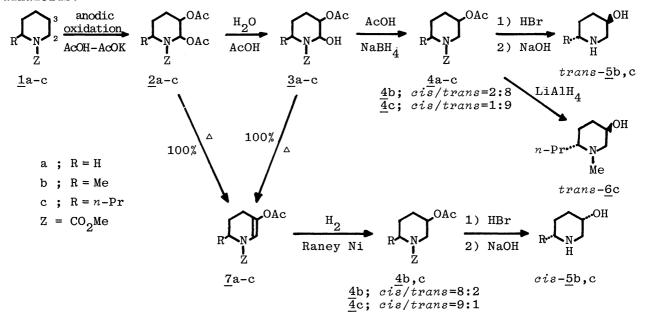
ACETOXYLATION OF PIPERIDINE DERIVATIVES AT THE 3-POSITION. STEREOSELECTIVE SYNTHESIS OF PSEUDOCONHYDRINE AND N-METHYLPSEUDOCONHYDRINE 1)

Tatsuya SHONO,* Yoshihiro MATSUMURA, Osamu ONOMURA,

Takenobu KANAZAWA, and Masahiro HABUKA


Department of Syntheitc Chemistry, Faculty of Engineering,

Kyoto University, Yoshida, Sakyo, Kyoto 606

Anodic oxidation of N-methoxycarbonylpiperidine derivatives in AcOH gave 2,3-diacetoxylated products, which were shown to be useful intermediates for the stereoselective synthesis of 3-hydroxypiperidine derivatives including pseudoconhydrine and N-methylpseudoconhydrine, the *Conium* alkaloids.

Functionalization of a methylene group remote from an active site is one of the important subjects in organic synthesis, though only few methods have been known to be practically useful so far. 2 We report herein a new method convenient for introducing an acetoxyl group to 3-position of piperidines ($\underline{1}$).

Scheme 1 illustrates our method applied to the stereoselective synthesis of pseudoconhydrine, $trans-\underline{5}c$ and N-methylpseudoconhydrine, $trans-\underline{6}c$, the Conium alkaloids. 3)

Scheme 1.

The typical procedures are shown below. The anodic oxidation of N-methoxy-carbonylpiperidine 1a (15 mmol) in AcOH (40 ml) containing AcOK (40 mmol) without

using diaphragm yielded 2,3-diacetoxylated compound $\underline{2}a$, which was unstable and easily converted into 2-hydroxy-3-acetoxypiperidine $\underline{3}a$ in workup. The treatment of the electrolyzed solution with water (method A; r.t., 6 h) gave only $\underline{3}a$, while a mixture of $\underline{2}a$ and $\underline{3}a$ was obtained under weakly basic conditions using cold aq. NaHCO₃ (method B). The yields of $\underline{2}$ and $\underline{3}$ are shown in Table 1.

Table 1. Anodic Oxidation of Piperidine Carbamates and Amides 1a-f in AcOHa)

Entry	Compound	R	Z	Electricity passed (F/mol)	Method ^{b)}	Isolated 2a,b,d-f	yield/% <u>3</u> a-e
1	<u>1</u> a	H	${ m CO_2^{Me}}$	20	A		<u>3</u> a (88)
2	<u>1</u> a	H	$^{-}$ CO $_{2}^{ ext{Me}}$	12	В	<u>2</u> a (61)	<u>3</u> a (20)
3	<u>1</u> b	Me	CO ₂ Me	20	A		<u>3</u> b (92)
4	<u>1</u> b	Me	CO ₂ Me	20	В	<u>2</u> b (34)	<u>3</u> b (45)
5	<u>1</u> c	n-Pr	${\tt CO}_2^{\sf Me}$	21	A		<u>3</u> c (93)
6	<u>1</u> d	Et	CO ₂ Me	20	A		<u>3</u> d (84)
7	<u>1</u> d	Et	CO ₂ Me	20	В	<u>2</u> d (35)	<u>3</u> d (30)
8	<u>1</u> e	Н	COPh	50	A	0	<u>3</u> e (69)
9	<u>1</u> e	Н	COPh	25	В	<u>2</u> e (77)	
10	<u>1</u> f	Н	${\rm CO_2CH_2Ph}$	17	В	<u>2</u> f (50)	
10	±+	11	2012	11	D	<u>2</u> 1 (30)	

a) Anode, Pt; Cathode, Carbon. b) Method A; Workup with water (r.t., 6 h). Method B; Workup with cold aq. NaHCO₂.

The transformation of 2a-c or 3a-c to 3-acetoxypiperidines <math>4a-c was easily achieved by treating 2a-c or 3a-c (5 mmol) with NaBH₄ (5 equiv. mol) in AcOH (20 ml). Isolated yields of $4a-c^4$) were as follows: 4a, 92% from 2a, 59% from 3a; 4b, 84% from 2b, 78% from 3b; 4c, 78% from 3c. Stereoisomers of products 4b and 4c were separable by GLC, and the ratios of trans-4 to cis-4 were 8:2 in b series and 9:1 in c series. The stereochemistry between 3-acetoxyl group and 6-alkyl substituent was confirmed at the stage of final products 5b, c. Hydrolysis of 4b with 47% HBr followed by treatment with aq. NaOH gave trans-3-hydroxy-6-methylpiperidine, $trans-5b^{(6a)}$ (59%). Similar hydrolysis of 4c gave pseudoconhydrine, $trans-5c^{(6a)}$ (58%). Also, reduction of trans-4c with LiAlH₄ gave N-methylpseudoconhydrine, $trans-6c^{(3b)}$ (93%).

On the other hand, cis-5b and cis-5c could be prepared almost exclusively from

<u>2</u>b,c or <u>3</u>b,c. Namely, heating <u>2</u>b,c or <u>3</u>b,c in AcOH for a short period (5-10 min) quantitatively gave <u>7</u>b,c,⁴) which were then hydrogenated (10 atm) over Raney Ni to yield <u>4</u>b (81%, cis/trans=8:2)⁵) and <u>4</u>c (76%, cis/trans=9:1).⁵) The cis-configuration of the major isomers of <u>4</u>b,c was deduced from the fact that cis-<u>5</u>b,c^{6b-d)} were obtained as the major products from 4b,c upon hydrolysis with 47% HBr.

The compounds $\underline{2}$ and $\underline{3}$ were useful intermediates for the synthesis of 2-alkyl-3-acetoxypiperidines. Thus, the reaction of $\underline{2}a$ with silyl enol ether $\underline{8}$ in the presence of Lewis acid yielded $\underline{9}$ (Eq. 1). Similarly, $\underline{3}a$ gave $\underline{11}$ and $\underline{13}$ upon reaction with enol acetate $\underline{10}$ and allylsilane $\underline{12}$, respectively (Eqs. 2 and 3).

The inactive 3-position of $\underline{1}$ seems to be acetoxylated by the anodic oxidation of an intermediate enecarbamate $\underline{15}^{7}$) generated in situ from the initial product $\underline{14}$ since the anodic oxidation of $\underline{15}$, independently prepared from $\underline{1}$ a through $\underline{16}$, $\underline{8}$) in AcOH afforded 2a in 71% yield (Scheme 2).

$$\underline{1}a \qquad \underline{-2e} \qquad \qquad \underbrace{N}_{N} \qquad \underline{-2e} \qquad \qquad \underbrace{N}_{OAc} \qquad \qquad \underbrace{-2e} \qquad \qquad \underbrace{N}_{OAc} \qquad \qquad \underbrace{14}; \quad R = Ac \qquad \qquad \underbrace{15} \qquad \qquad \underbrace{2}a \qquad \qquad \underbrace{2}a \qquad \qquad \underbrace{2} = CO_{2}Me$$
Scheme 2.

On the other hand, carbamates other than $\underline{1}$ showed different patterns of reactions as exemplified in Eqs. 4 and 5. Thus, the anodic oxidation of $\underline{17}$ and $\underline{19}$ in AcOH did not give 2,3-diacetoxylated products $\underline{22}^9$ and $\underline{24}$, but $\underline{18}$ was obtained from $\underline{17}$ and a mixture of butyraldehyde and $\underline{20}$ from $\underline{19}$.

As suggested in Scheme 2, however, the 3-position of $\underline{17}$ and $\underline{19}$ were successfully acetoxylated by using the corresponding enecarbamates as the starting compounds. Thus, $\underline{17}$ and $\underline{19}$ were converted into enecarbamates $\underline{21}$ and $\underline{23}$ according to our previously reported method⁷⁾ and the anodic reaction of $\underline{21}$ and $\underline{23}$ under the conditions similar to the oxidation of $\underline{15}$ yielded 2,3-diacetoxylated products $\underline{22}$ and 24 in 55 and 76% yields, respectively (Eqs. 6 and 7).

This work was partly supported by a grant from the Asahi Glass Foundation for Industrial Technology.

References

- 1) Electroorganic Chemistry. 86.
- For example, K. Heusler, P. Wieland, and Ch. Meystre, Org. Synth., 45, 57 (1965); J. Y. Becker, L. R. Byrd, and L. L. Miller, J. Am. Chem. Soc., 96, 4718 (1974); R. Breslow, R. J. Corcoran, B. B. Snider, R. J. Doll, P. L. Khanna, and R. Kaleya, ibid., 99, 905 (1977).
- 3) a) D. Gross, Fortschr. Chem. Org. Naturst., 29, 1 (1977); b) M. F. Roberts and R. T. Brown, Phytochemistry, 20, 447 (1981).
- 4) All compounds were identified by spectroscopic data and elemental analysis or mass spectra.
- 5) The ratios were determined by GLC.
- 6) a) E. Brown, J. Lavoue, and R. Dhal. Tetrahedron, 29, 455 (1973); b) M. M. Cook and C. Djerassi, J. Am. Chem. Soc., 95, 3678 (1973); c) B. Renger, H. -O. Kalinowski, and D. Seebach, Chem. Ber., 110, 1866 (1977); d) B. Renger and H. Hügel, ibid., 111, 2630 (1978); e) K. E. Harding and S. R. Burks, J. Org. Chem., 49, 40 (1984).
- 7) T. Shono, Y. Matsumura, K. Tsubata, Y. Sugihara, S. Yamane, T. Kanazawa, and T. Aoki, J. Am. Chem. Soc., 104, 6697 (1982).
- 8) T. Shono, H. Hamaguchi, and Y. Matsumura, J. Am. Chem. Soc., 97, 4264 (1975).
- 9) Anodic diacetoxylation of indoline and indole derivatives; S. Torii, T. Yamanaka, and H. Tanaka, J. Org. Chem., 43, 2882 (1978).